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There is a large number of published papers (see the references
given in the review [1]) in which various cases of the steady-state lam-
inar flow of a conducting medium in a plane channel in the presence
of a transverse magnetic field are considered, However, -it has always
been assumed that the transport coefficients were constants independent
of the flow parameters such as the temperature, As a result, the.dynam-
ic and thermal problems were separable, and the temperature distrib-
ution had no effect on the dynamic flow parameters,

In a low-temperature dense plasma, the conductivity is a very
rapidly increasing function of temperatire (it is approximately given
by 6 ~ e A/T or o ~ Ty, 1t is clear that, in this case, it is ne-
cessary to take into account the fact that the transport coefficients are
not constants, and the dynamic and thermal problems are not separa-
ble even for an incompressible fluid, We shall refer to such flows as
nonisothermal, and contrast them with flows for which the transport
coefficients are constants, and which we shall refer to as isothermal.
for the sake of brevity. .

The importance of effects due to the nonisothermal nature of a flow
was demonstrated in [2, 3]. Hysteresis effects in friction and heat
transfer, which were found in these papers, were discussed qualitatively
in [4]. Finally, the flow of a fluid with temperature-dependent con-
ductivity in an MHD-channel was considered in [5] where it was noted
that the nonisothermal nature of the flow must be taken into account,
In particular, the appearance of nonmonotonic velocity profiles with
points of inflection was demonstrated [5], However, the latter paper
included a number of conflicting assumptions. For example, when the
propagation of heat was considered along the flow, it was assumed
that the conductivity varied only across the channel, The temperature
dependence of the conductivity used [5] was quite unrealistic, while
the temperature dependence of viscosity and thermal conductivity was
not taken into account at all. :

In the present paper we investigate the flow of plasma in a plane
MHD-~channel in the absence of a longitudinal flow of heat but with
allowance for the temperature dependence of the transport coefficients,
We shall use a more realistic form of the temperature dependence for
the above parameters, and will take viscous energy dissipation into ac-
count,

§1. We shall try to determine the velocity and tem-
perature distributions u(y) and T(y) for steady flow
of a viscous conducting fluid in a plane channel formed
by parallel nonconducting walls y =+ g. The walls are
maintained at a constant temperature T;. We shall
suppose that the pressure gradient 8p/dx =~P < 0
acts along the x-axis, while uniform magnetic and elec-
tric fields B and E are applied along the y and z ‘axes:.
We shall further suppose that the applied fields do not
violate the isotropy of the fluid parameters. If a
steady-state solution which depends only on y exists,
then it must satisfy the following equations which fol-
low from the general system of magnetohydrodynamic
equations:

(N 2) —6(E +uB)B+ P =0;

ay \ " dy
d ( dT d
d—y(u.@)—l—c(E-{—uBP-}—n(%)z-_— 0. (1L.1)
The corresponding boundary conditions are
u(ta)y=0,T(ta)="T,. (1.2)

When the transport coefficients ¢, #, 1 are con-
stants, then Egs. (1.1) are linear, and the first of
them can be solved independently of the second (this is
the so-called Hartmann problem). In general, however,
o, M 7 are functions of temperature, and the system
of equations given by (1. 1) is nonlinear, i.e., the dy-
namic problem cannot be separated from the thermal
problem.

It is readily seen that three independent dimension-
less combinations can be formed out of the parameters
of the problem. We shall use the following quantities
as the similarity criteria:

M=aB]/T:]—E—,

(1.3)
: Eng P2t
K—_W’ = %onoTy

The velocity and temperature scales will be taken
to be up = Pa¥/ny and Tp = P?a%/nymp. Substituting

u

, v=—, w=v—K,
1’3
P

where Gy, %y, My are the values of o, ®, 1 for T = T,
and denoting differentiation with respect to £ by a
prime, we can rewrite Egs. (1.1) in the dimensionless
form

(') — MPsw +-1=0,

(k0') + Mesw? + h @) = 0. (1.4)

Since the problem is symmetric with respect fo §,
it is sufficient to find the solution in the interval (0, 1).
The boundary conditions must then be taken in the
form

w0 =0 w{l)=—K,0@0) =0 61 =0. (L.5)

Only the parameters o, %, 1 will depend on the ab-
solute temperature, and therefore N will appear only
in the functions s, k, h. In the linear problem, these
functions are identically equal to unity, and the quan-
tity N cancels out. Here we shall assume that

G = Gy (%)a, ﬁ:uo(—;—o)ﬂ, 'ﬂ=7]o('jv7%>y. (1.6)
or

s=(+NO©, k=(1+NOB h=(-+NO. (1.7)

This case is of particular interest for plasma flow
analysis. Thus, for fully ionized plasma o = 3/ 9 B =
=y=15/ 2, while for weakly ionized gas the electrical
conductivity is a rapidly varying function of tempera-~
ture, which can be approximated by a power func-
tion with o ~ 10. When o = 8 =y = 0, the problem
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degenerates to the linear problem for which we have
two similarity criteria, namely, M and K. The expo~
nents «, B, ¥ will be regarded as additional similari-
ty criteria. Therefore, the solution of the nonlinear
boundary-value problem defined by Egs. (1.4) and
(1.5) depends on six dimensionless parameters, i.e.,
it is of the form

v=v( K, M, N, a, B, y),

6=0(¢ K, M, N, qa, B, v). (1.8)

In the general case, the solution can be obtained
only by numerical methods. For relatively small
values of M and N it is possible to use the methods of
conjugate equations with iteration [6, 7]. For large M
and N, the method of finite differences has been found
to be the only acceptable one.
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The problem can also be formulated in another way
by specifying the current I per unit length of the chan-
nel, instead of the field E. It is then convenient to re-
place K by the dimensionless mean current dengity in
the channel

J=1B/2Pa, (1.9)

so that the boundary conditions (1.5) are replaced by
w (0) = 0,
0’ (0) = 0,

w (1) = J — 1,

61)=0. (1.10)

The current is therefore uniquely related to the de-
rivative of the velocity at the wall. From Egs. (1.4)
we can obtain an expression for the mean dimension-
less velocity (one half of the flow rate of the fluid)

V:

dy =

ofr

¢ e
§

“p

=w([1+w )] —61)=KJ+0Q, (1.11)

where @ is the dimensionless heat flow to the channel
wall.

The following is a brief classification of the possi-
ble flow states:

(1) V<0, K<90,J>0— conductive pumping;

(2) V=10, K< 0, J > 0 — channel cutoff;

(3) V>0, K< 0, J>0— electromagnetic drag;

(4)V >0, K=0, d > 0 — short circuited MHD-gen-
erator;

(5)V >0, K>0,J>0— MHD-generator mode;

(6) V>0, K> 0, J=0— zero-load MHD-genera-
tor

(7) V>0, K> 0, J > 0— MHD-accelerator

Henceforth we shall pay particular attention to
cases (4) and (6).
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§2. For the heat transfer problem whichwe are con-
sidering, the temperature distribution is monotonic
and the plasma transport coefficients increase mono-
tonically toward the center of the channel. This means
that, other things being equal, the current density and
the ponderomotive force at the center of the flow should
exceed the corresponding quantities in the isothermal
case, i.e., the fact that the flow is nonisothermal leads
to a flattening of the velocity profile and to a reduction
of its mean value if the ponderomotive force retards
the flow. This effect increases with increasing N and «.
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The degree of deformation of the velocity profile and
the change in its magnitude are also found to depend on
the flow conditions. For example, when K = 0, the
current density increases toward the center without
changing sign across the channel. An increase in the
conductivity elongates the current profile still further,
continuously increasing the retarding force at the cen-
ter. For J = 0, when the current density does change
gign across the flow, there may be an additional non-
isothermal retardation of the flow core, while accelera-
tion by the ponderomotive force in the outer regions
increases more slowly. Although in both cases the re-
sult is a more extended velocity profile, it is expected
that nonisothermal effects are more clearly defined
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when K = 0. The above discussion is illustrated by the
velocity profiles shown in Fig. 1. The numbers shown
against the various curves represent the values of M.
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The following correspondence between the values of

a, B, v and the shape of the curves is used: (a) a=
=B=v=0,(b) a="/y B=v="/y (c) a=10, B =
=y =0, When J = 0 and M = 10, the solid and dashed
lines coincide, while for K = O and M = 10 there is
still an appreciable difference between them. Figure 2
shows the variation of the mean velocity V with M for
the same cases (the numbers shown against the curves
are the values of N). It is clear that, when the noniso-
thermal effects are taken into account, there is a re-
duction in the flow rate, and the difference increases
with increasing N and «. As M increases, there is a
stronger deceleration of the flow for K = 0 than for

J = 0, as in the isothermal case.

The difference between the linear and nonlinear
problems can be seen most clearly under the channel
cutoff conditions. Thus, it is well known that in the
isothermal case with K = —M~2, both V and v change
sign simultaneously for all values of §. In the noniso-
thermal case, this is impossible, and a transition re-
gion appears in the neighborhood of V = 0 in which v(§)
changes sign, i.e., the velocity profile has points of
inflection. Figure 3 shows the effect of a change in K
on the velocity profile for M= 1, N=1, a=3%/, 8 =
=y=9/ 2

We note that nonmonotonic velocity profiles with
points of inflection are also found to appear as N in-
creases under other flow conditions, for example, for
K =0, N> 100. Their shape can be explained by the
distribution of temperature, currents, and forces in
each specific case, although it is not clear whether
such states can be realized in practice. If the condi-
tions necessary for the validity of the Rayleigh-Toll~
mien theorem are satisfied, the theorem definitely
indicates that these states are unstable. This will evi-
dently take place when the parameter S = M%/R and the
magnetic Reynolds number Ry, = gyuua are small. In
other cases, the problem requires special analysis.

Figure 4 shows the maximum temperature 6(0) as
a function of M for J = 0. (When K = 0 there is an ana-
logous situation. ) We note that when the nonisothermal
effects are taken into account, there is a reduction in
the temperature in the channel for both fully ionized
and weakly ionized plasma. The physical reason for
this is the reduction in Joule heating due to the increase
in conductivity. The reduced heating is very dependent
on N (see numbers on the curves).

§3. Finally, considerthe effect of nonisothermal con-
ditions on the coefficients of skinfrictionand heat trans-
fer to the wall. The problem does not depend on the
density of the fluid (and the solutions are formally valid
for any R). Therefore, it is convenient to replace the
usual friction coefficient

— Mo [du / dy]u:a
€= a7z
by the dimensionless combination
CR[2=—v (1)]v(0). (3.1)

The dimensionless heat transfer coefficient is given
by

-5~
(¢ = o TO=To)

where the heat-flow scale is chosen to be g°.
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The quantities given by Eqs. (3. 1) and (3.2) are
shown in Fig. 5 as functions of M for K = 0 (the num-
bers shown against the curves represent the values of
N). As expected, since the velocity profiles are extend-
ed, the frictional resistance in the nonisothermal case
is greater, and the difference increases with increas-
ing N and «. The descending curves show the behavior
of Cq. When J = 0, the behavior of the curves for the
friction coefficient remains the same, while the behav-
ior of Cq changes radically: the Cq(M) curves are sim-
ilar to the skin friction terms. All this is readily
understood by considering v and 6 forlarge M whenK =
=0, J = 0 in the isothermal problem, where all the
formulas are elementary.
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We note in conclusion that the above nonisothermal effects are in
many respects due to the assumed positive values of «, 8, and y, which
is valid for plasmas. For other media, for example, liquid metals,
o can be negative, and it will not be surprising if some of the above
effects change their magnitude and even sign.

The authors are deeply indebted to M. V. Maslen-
nikov and Yu. S. Sigov for valuable advice in connec-
tion with the numerical method of solution.
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