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There is a large number of published papers (see the references 
given in the review [1]) in which various cases of the steady-state lam- 
inar flow of a conducting medium in a plane channel in the presence 
of a transverse magnetic field are considered. However, it has always 
been assumed that the transport coefficients were constants independent 
of the flow parameters such as the temperature. As a result, the dynam- 
ic and thermal problems Were separable, and the temperature distrib- 
ution had no effect on the dynamic flow parameters. 

In a low-temperature dense plasma, the conductivity is a very 
rapidly increasing function of temperature (it is approximately given 
by o ~ e-A/T or o ~ Tl~ It is clear that, in this case, it is ne- 
cessary to take into account the fact that the transpor~ coefficients are 
not constants, and the dynamic and thermal problems are not separa- 
ble even for an incompressible fluid. We shall refer to such flows as 
nonisothermal, and contrast them with flows for which the transport 
coefficients are constants, and which we shall refer to as isothermal 
for the sake of brevity. 

The importance of effects due to the nonisothermal nature of a flow 
was demonstrated in [2, 3]. Hysteresis effects in friction and heat 
transfer, which were found in these papers, were discussed qualitatively 
in [4]. Finally, the flow of a fluid with temperature-dependent con- 
ductivity in an MHD-channel was considered in [5] where it was noted 
that the nonisothermal nature of the flow must be taken into account. 
In particular, the appearance of nonmonotonic velocity profiles with 
points of inflection was demonstrated [5]. However, the latter paper 
included a number of conflicting assumptionS. For example, when the 
propagation of heat was considered along the flow, it was assumed 
that the conductivity varied only across the channel. The temperature 
dependence of the conductivity used [5] was quite unrealistic, while 
the temperature dependence of viscosity and thermal conductivity was 
not taken into account at all. 

In the present paper we investigate the flow of plasma in a plane 
MHD-channel in the absence of a longitudinal flow of heat but with 
allowance for the temperature dependence of the transport coefficients. 
We shall use a more realistic form of the temperature dependence for 
the above parameters, and will take viscous energy dissipation into ac- 
count. 

w i. We shall try to determine the velocity and tem- 
perature distributions u(y) and T(y) for steady flow 

of a viscous conducting fluid in a plane channel formed 

by parallel nonconducting walls y = + a. The walls are 
maintained at a constant temperature To. We shall 
suppose that the pressure gradient Op/Ox = -P < 0 

a c t s  a l o n g  t h e  x - a x i s ,  w h i l e  u n i f o r m  m a g n e t i c  and  e l e c -  

t r i c  f i e l d s  B and  E a r e  a p p l i e d  a l o n g  t he  y and  z a x e s .  

We  s h a l l  f u r t h e r  s u p p o s e  t h a t  t he  a p p l i e d  f i e l d s  do  n o t  

v i o l a t e  t h e  i s o t r o p y  of  t h e  f l u i d  p a r a m e t e r s .  If  a 
s t e a d y - s t a t e  s o l u t i o n  w h i c h  d e p e n d s  o n l y  o n  y e x i s t s ,  
t h e n  i t  m u s t  s a t i s f y  t h e  f o l l o w i n g  e q u a t i o n s  w h i c h  f o l -  

low f r o m  t h e  g e n e r a l  s y s t e m  of  m a g n e t o h y d r o d y n a m i c  

e q u a t i o n s :  
d / du~ 
-d~y kn T{) - - ~  (E + uB) B + P ---- 0; 

u B ~  j 7 - f du ~, 

T h e  c o r r e s p o n d i n g  b o u n d a r y  c o n d i t i o n s  a r e  

u (+  a) = 0,  T (5= a) ---- To.  ( 1 . 2 )  

W h e n  t h e  t r a n s p o r t  c o e f f i c i e n t s  a-, ~t, ?? a r e  c o n -  
s t a n t s ,  t h e n  E q s .  ( 1 .1 )  a r e  l i n e a r ,  and  t h e  f i r s t  of  
t h e m  c a n  b e  s o l v e d  i n d e p e n d e n t l y  of t he  s e c o n d  ( t h i s  i s  
t h e  s o - c a l l e d  H a r t m a n n  p r o b l e m ) .  In g e n e r a l ,  h o w e v e r ,  
or, x ,  V a r e  f u n c t i o n s  of  t e m p e r a t u r e ,  and  t he  s y s t e m  

of  e q u a t i o n s  g i v e n  by  ( 1 . 1 )  i s  n o n l i n e a r ,  i . e . ,  t h e  d y -  
n a m i c  p r o b l e m  c a n n o t  b e  s e p a r a t e d  f r o m  t h e  t h e r m a l  

p r o b l e m .  
I t  i s  r e ad i l y ,  s e e n  t h a t  t h r e e  i n d e p e n d e n t  d i m e n s i o n -  

l e s s  c o m b i n a t i o n s  c a n  b e  f o r m e d  ou t  of  the  p a r a m e t e r s  

of  t he  p r o b l e m .  W e  s h a l l  u s e  t he  f o l l o w i n g  q u a n t i t i e s  

a s  t h e  s i m i l a r i t y  c r i t e r i a :  

= a B  ~ V - ~ _  - - ~  , M 
( 1 . 3 )  

K = E,}o N ~ P2a4 
BPa ~ ' uo'qoTo " 

T h e  v e l o c i t y  and  t e m p e r a t u r e  s c a l e s  w i l l  b e  t a k e n  
to  b e  u p  = Pa2/~?0 and  T p  = p2a4/x0~70. S u b s t i t u t i n g  

~ = ,u u w = v K ,  ~ ,  v = % - - - p ,  

0 T--To s=~_~,  k =  x h =  rl 
= ~ ' ~. ' , , -7'  n-7" 

w h e r e  a0, ~0, r/0 a r e  t he  v a l u e s  of  a ,  n ,  ~/ f o r  T = To, 
and  d e n o t i n g  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to  ~ by  a 

p r i m e ,  we  c a n  r e w r i t e  E q s .  ( 1 . 1 )  in  t h e  d i m e n s i o n l e s s  

f o r m  

(hw')' -- M%w + 1 = O, 

(kO')' + M % w  2 + h (w') ~ = O. ( 1 . 4 )  

S i n c e  t he  p r o b l e m  i s  s y m m e t r i c  w i t h  r e s p e c t  to  ~, 

i t  i s  s u f f i c i e n t  to  f i n d  t he  s o l u t i o n  i n  t h e  i n t e r v a l  (0,  1). 

T h e  b o u n d a r y  c o n d i t i o n s  m u s t  t h e n  b e  t a k e n  i n  t h e  

f o r m  

w ' (0 )  = 0, w(i)----  - - g ,  0' (0)---- 0, 0 ( i )  = 0 .  ( 1 . 5 )  

On ly  t he  p a r a m e t e r s  a,  ~r ~ w i l l  d e p e n d  on  t h e  a b -  

s o l u t e  t e m p e r a t u r e ,  and  t h e r e f o r e  N w i l l  a p p e a r  on ly  

in  t h e  f u n c t i o n s  s ,  k ,  h.  In t he  l i n e a r  p r o b l e m ,  t h e s e  

f u n c t i o n s  a r e  i d e n t i c a l l y  e q u a l  to  u n i t y ,  and  t he  q u a n -  

t i t y  N c a n c e l s  ou t .  H e r e  we s h a l l  a s s u m e  t h a t  

(T; (1.6) ~ = ~ o  , ~ = •  ~ o  ' ~ = ~ o  ~ o  " 

o r  

s - - ( l + I v o ) %  k - - - - ( l + I V 0 p ,  h = ( I + N 0 )  ! .  ( 1 . 7 )  

T h i s  c a s e  i s  of  p a r t i c u l a r  i n t e r e s t  f o r  p l a s m a  f low 
a n a l y s i s .  T h u s ,  f o r  f u l l y  i o n i z e d  p l a s m a  ~ = 3/2, fl = 
= 7 = 5/3, w h i l e  f o r  w e a k l y  i o n i z e d  g a s  t h e  e l e c t r i c a l  

c o n d u c t i v i t y  i s  a r a p i d l y  v a r y i n g  f u n c t i o n  of  t e m p e r a -  

t u r e ,  w h i c h  c a n  b e  a p p r o x i m a t e d  by  a p o w e r  f u n c -  

t i o n  w i t h  a ~ I0 .  W h e n  ~ = fl = 7 = 0, t h e  p r o b l e m  
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degenera tes  to the l i n e a r  p rob lem for which we have 
two s i m i l a r i t y  c r i t e r i a ,  namely ,  M and K. The expo- 
nents  a ,  fl, y wil l  be regarded  as addit ional  s i m i l a r i -  
ty c r i t e r i a .  There fore ,  the solution of the non l inea r  
bounda ry -va lue  p rob lem defined by Eqs. (1.4) and 
(1.5) depends on six d imens ion l e s s  p a r a m e t e r s ,  i .e. ,  
it is of the form 

v =  v(~; K, M , N , a ,  fi, 7), 

O = O (~; K, M, N, a, fi, 7). (1.8) 

In the genera l  case ,  the solut ion can be obtained 
only by n u m e r i c a l  methods.  For  re la t ive ly  sm a l l  
va lues  of M and N it is poss ib le  to use the methods of 
conjugate equat ions with i t e r a t ion  [6, 7]. For  la rge  M 
and N, the method of finite d i f fe rences  has been found 
to be the only acceptable  one. 

Fig.  1 

The p rob lem can also be fo rmula ted  in another  way 
by speci fy ing the c u r r e n t  I per  unit  length of the chan-  
nel ,  ins tead  of the field E. It is then convenient  to r e -  
place K by the d i m e n s i o n l e s s  mean  c u r r e n t  dens i ty  in 
the channel  

J = ] B  I 2 P a ,  (1.9) 

so that the boundary  condi t ions  (1.5) a re  r ep laced  by 

w' (o) = o, w' (t) = ] - i ,  

0 ' ( o ) = o ,  0 ( i ) = o .  (1. l o )  

The c u r r e n t  is the re fore  uniquely r e l a t ed  to the de-  
r iva t ive  of the ve loc i ty  at the wall.  F r o m  Eqs. (1.4) 
we can obtain an exp re s s ion  for  the mean  d i m e n s i o n -  
l e s s  ve loc i ty  (one half  of the flow ra te  of the fluid) 

a 

V =  l~u(Y)  d g =  
a d up 

o 

= w ( l ) [ i + w ' ( t ) ] - - e ' ( l ) = K Y + O ,  (1.11) 

where  Q is the d i m e n s i o n l e s s  heat  flow to the channel  
wal l .  

The fol lowing is a b r i e f  c l a s s i f i ca t ion  of the p o s s i -  
ble flow s ta tes :  

(1) V < 0, K < 0, J > 0 --  conductive pumping;  
(2) V = 0, K < 0, J > 0 --  channel  cutoff; 
(3) V > 0, K < 0, J > 0 -  e l ec t romagne t i c  drag;  
(4) V > 0, K =  0, J > 0 

e r a to r ;  
(5) V > 0, K > 0, J > 0 
(6) V >  0, K >  0, J =  0 

tor  
(7) V >  0, K >  0, J >  0 

- -  shor t  c i rcu i ted  MHD-gen-  

-- MHD-gene ra to r  mode;  
--  z e ro - load  MHD-gene ra -  

-- MHD-acce l e r a t o r  

Hencefor th  we shal l  pay p a r t i c u l a r  a t tent ion to 

cases  (4) and (6). 

o.g 
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Fig. 2 

w For the heat transfer problem whichwe are con- 
sidering, the temperature distribution is monotonic 

and the plasma transport coefficients increase mono- 

tonically toward the center of the channel. This means 

that, other things being equal, the current density and 
the ponderomotive force at the center of the flow should 

exceed the corresponding quantities in the isothermal 
case, i.e., the fact that the flow is nonisothermal leads 

to a flattening of the velocity profile and to a reduction 
of its mean value if the ponderomotive force retards 

the flow. This effect increases with increasing N and (y. 

~ 

i ~ 7  

o / 

- oos  

Fig. 3 

The degree of deformation of the velocity profile and 

the change in its magnitude are also found to depend on 

the flow conditions. For example, when K = 0, the 
current density increases toward the center without 

changing sign across the channel. An increase in the 

conductivity elongates the current profile still further, 

continuously increasing the retarding force at the cen- 
ter. For J = 0, when the current density does change 

sign across the flow, there may be an additional non- 
isothermal retardation of the flow core, while accelera- 

tion by the ponderomotive force in the outer regions 

increases more slowly. Although in both cases the re- 

sult is a more extended velocity profile, it is expected 

that nonisothermal effects are more clearly defined 
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when K = 0. The above d i s cus s ion  is  i l l u s t r a t ed  by the 
ve loc i ty  p ro f i l e s  shown in Fig.  1. The number s  shown 
agains t  the v a r i o u s  c u r v e s  r e p r e s e n t  the va lues  of M. 
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Fig.  4 

The fol lowing c o r r e s p o n d e n c e  be tween the va lues  of 
a, fi, Y and the shape of the c u r v e s  is  used: (a) a = 
= fl = 7  = O, (b) a = 3 / 2 ,  fi = y = s / 2 ,  (c) a =  10, /3 = 
= ~/ = O. When J = 0 and 1V[ _> 10, the sol id  and dashed 

l ines  coincide ,  while for  K = O and M = 10 t h e r e  is  

s t i l l  an apprec iab le  d i f f e rence  be tween  them. F i g u r e  2 
shows the v a r i a t i o n  of the m e a n  ve loc i ty  V with M for  
the same c a s e s  (the n u m b e r s  shown agains t  the c u r v e s  
are  the va lues  of N). It is c l e a r  that ,  when the non iso-  
t h e r m a l  ef fec ts  a re  taken into account,  t he re  is  a r e -  
duction in the flow ra t e ,  and the d i f f e rence  i n c r e a s e s  
with i n c r e a s i n g  N and ~.  As M i n c r e a s e s ,  t h e r e  is a 
s t r o n g e r  d e c e l e r a t i o n  of the flow for  K = 0 than fo r  
J = 0, as in the i s o t h e r m a l  case .  

The d i f f e rence  be tween the l i nea r  and non l inear  

p r o b l e m s  can be seen m o s t  c l e a r l y  under  the channel  
cutoff condit ions.  Thus,  it is we l l  known that in the 
i s o t h e r m a l  case  with K = - M  -2, both V and v change 
sign s imul t aneous ly  for  all  va lues  of ~. In the non i so -  
t h e r m a l  case ,  this  is imposs ib l e ,  and a t r ans i t ion  r e -  

gion appears  in the ne ighborhood of V = 0 in which v(~) 
changes sign,  i . e . ,  the ve loc i t y  p ro f i l e  has  points  of 

inf lect ion.  F i g u r e  3 shows the effect  of a change in K 
on the ve loc i ty  p ro f i l e  for  M = 1, N = 1, a = 3/2 , fl = 
= y = 5/2. 

We note that  nonmonotonic  ve loc i t y  p ro f i l e s  with 
points  of in f lec t ion  a r e  also found to appear  as N in-  

c r e a s e s  under  o ther  flow condi t ions,  for  example ,  fo r  
K = 0, N ~ 100. T h e i r  shape can be expla ined by the 

d i s t r ibu t ion  of t e m p e r a t u r e ,  c u r r e n t s ,  and f o r c e s  in 
each  spec i f i c  case ,  although it is not c l e a r  whe the r  

such s t a t e s  can be r e a l i z e d  in p r a c t i c e .  If the condi -  
t ions n e c e s s a r y  for  the va l id i ty  of the R a y l e i g h - T o l l -  
m i e n  t h e o r e m  are  sa t i s f i ed ,  the t h e o r e m  def in i te ly  
ind ica tes  that  these  s t a t e s  a re  unstable.  This  wi l l  e v i -  
dent ly take p lace  when the p a r a m e t e r  S = M2/R and the 

magne t i c  Reynolds  n u m b e r  R m = cr0pua a re  smal l .  In 
o ther  c a s e s ,  the p r o b l e m  r e q u i r e s  spec ia l  ana lys i s .  

F i g u r e  4 shows the m a x i m u m  t e m p e r a t u r e  0 (0) as 
a function of M for  J = 0. (When K = 0 t he r e  i s  an ana-  
logous si tuat ion.  ) We note that  when the n o n i s o t h e r m a l  
ef fec ts  a r e  taken into account,  t he r e  is  a reduct ion  in 
the t e m p e r a t u r e  in the channel  fo r  both fully ionized 
and weakly ionized  p l a sm a .  The phys ica l  r e a s o n  for  
this  is  the reduc t ion  in Joule  heat ing  due to the i n c r e a s e  
in conduct ivi ty .  The reduced  heat ing  is v e r y  dependent  
on N (see  num ber s  on the curves) .  

w F ina l ly ,  c o n s i d e r  the ef fec t  of non i so the r ma l  con-  
di t ions  on the coef f ic ien ts  of s k i n f r i c t i o n  and heat  t r a n s -  

f e r  to the wall .  The p r o b l e m  does not depend on the 
dens i ty  of the fluid (and the solut ions a re  f o r m a l l y  va l id  
for  any R). T h e r e f o r e ,  it is convenient  to r e p l a c e  the 
usual  f r i c t ion  coef f ic ien t  

- -  "qo [du / dy]~,= a 
Cf = pu 2 (0) t 2 

by the d i m e n s i o n l e s s  combinat ion 

by 

csR / 2 = - v '  (t) / v (0). ( 3 . 1 )  

The d i m e n s i o n l e s s  heat  t r a n s f e r  coef f ic ien t  is  given 

• [ d T ]  0'(i) 
Cq = - -  ~-~ ~ -  ~=a - 0 (o) 

(q~ = z0 T (0)a T~), 

whe re  the hea t - f low sca le  i s  chosen to be q~ 
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Fig.  5 

The quant i t ies  given by Eqs .  (3.1) and (3.2) a re  
shown in Fig.  5 as funct ions of M for  K = 0 (the num-  
b e r s  shown agains t  the c u r v e s  r e p r e s e n t  the va lues  of 
N). As expected ,  s ince  the ve loc i ty  p r o f i l e s  a re  extend-  
ed, the f r i c t iona l  r e s i s t a n c e  in the n o n i s o t h e r m a l  case  
i s  g r e a t e r ,  and the d i f f e rence  i n c r e a s e s  with i n c r e a s -  

ing N and ~. The descend ing  c u r v e s  show the behav io r  

of Cq. When J = 0, the behav io r  of the c u r v e s  fo r  the 
f r i c t ion  coef f ic ien t  r e m a i n s  the s ame ,  while  the behav-  
io r  of Cq changes  rad ica l ly :  the Cq(M) c u r v e s  a re  s i m -  
i l a r  to the skin f r i c t ion  t e r m s .  Al l  th is  is r e ad i l y  
unders tood  by c o n s i d e r i n g  v and 0 fo r  l a r g e  M when K = 

= 0, J = 0 in the i s o t h e r m a l  p r o b l e m ,  where  all the 

f o r m u l a s  a re  e l e m e n t a r y .  
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We note in conclusion that the above nonisothermal effects are in 
many respects due to the assumed positive values of c~, B, and ?', which 
is valid for plasmas. For other media, for example, liquid metals, 
c~ can be negative, and it will not be surprising if some of the above 
effects change their magnitude and even sign. 

The authors  a re  deeply indebted to M. V. M a s l e n -  
nikov and Yu. S. Sigov for  va luable  advice in connec-  
tion with the n u m e r i c a l  method  of solution.  
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